MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			Mark Scheme: Teachers' version			Syllabus	Paper	
			IGCSE – May/June 2012			0607	42	
1	(a)	510		2	M1 for 0	$.85 \times 600$		
	(b) (i)	12.5		2	M1 for $\frac{17500}{20000} \times 100$ soi or $\frac{20000 - 17500}{20000}$			
	(ii)	155	www 3	3	M2 for $\frac{1}{2}$			
	(c)	3000		2	M1 for ÷	- 14 × 5	[9]	
2	(a) (i)	125		1				
	(ii)	35		1				
	(b) (i)	35		1				
	(ii)	80 w	www 2	2	M1 line extended from R parallel to ST or for line extended from TS parallel to QP with one extra angle found or extending PQ and one angle found			
	(c) (i)	40		2	M1 for recognising OAT or $OBT = 90^{\circ}$			
	(ii) 110			2	M1 for 220° seen at centre or 70° seen angle on circumference in alternate se			
	(iii) 9.40		(9.396 – 9.397)	$2 \times 5 \times \sin 70^\circ$ or				
					or M1 fo	- 2.5.5 cos 140 oe or identifying correc cosine formula oe	et trig ratio or [12]	
3	(a)	9.95×	< 10 ⁻⁵	1				
	(b)	1.1×	10 ⁻⁵	1				
	(c)	9.9×	10 ⁻⁵	2		gs 595 seen (can be .916 to 9.917)	e implied by	
	(d)	1.05×	$\times 10^{-4}$ or 1.06×10^{-4}	3	or M1 fo	$1.0 \times 10^{-4}) \times 7 - \text{the}$ or $(1.0 \times 10^{-4}) \times 7$ so of 6 values $+ x) \div 7$	i	

	Page	3	Mark Scheme: Teachers	Syllabus	Paper					
		IGCSE – May/June 2012			0607	42				
4	(a)	-1								
	(b)	3, -3			B1 for 3, 1	B1 for -3				
	(c)	(x-2)	$x^{2} - 5 \operatorname{or} (x - 2)(x - 2) - 5$ x - 2x + 4 - 5	M1 A1						
		$x^2 - 2x - 2x + 4 - 5$			-4x can be allowed for $-2x - 2x$					
	(d)	1			B1 for -4.	x - 1 = -5 or better				
					or M1 for using intersection on reasonable sketch [7]					
5	(a) (i)	13.4 (1	3.41 to 13.42)	2	M1 for 18	$b^2 - 12^2$ soi				
	(ii)	48.1 or	48.2 (48.11 - 48.19)	2	M1 for co	$s[A] = \frac{12}{18}$ oe				
	(b)	Angle	$FBE = \frac{1}{2}$ their (a)(ii)	M1						
		tan (the their (a BE	eir <i>FBE</i> or $\frac{1}{2}$ their (a)(ii)) = (a)(i) <i>b</i> oe	M1						
		<i>BE</i> = 2	9.95 to 30.05 at least 4 figs	A1						
	(c)	art 32.8 or 32.9		2	M1 for [<i>F</i>	$B^2 =]$ their 13.4(16)	$()^2 + 30.0^2$ oe			
	(d)	14.3 (1	4.28 to 14.30)	3	M1 for $20^2 + 30^2$.	$- 2 \times 20 \times 30 \cos(\frac{1}{2} \text{ th})$	neir(a)(ii))			
					A1 for 204	4.1 to 204.6	[12]			

Page 4					on Syllabus P	Paper		
			IGCSE – May/June	0607	42			
6	(a)	Correc	et sketch	3	 B1 for two branches with correct s B1 for lower crossing <i>y</i>-axis at approximately (0, -6) B1 for upper crossing or touching right of (1, 0) and left of (4, 0) 	-		
	(b)	<i>x</i> = 1		1				
	(c)	-	5.83 (-5.828) 0.172 (-0.1716 to -0.1715)	B1 B1	If B0 , SC1 for $y \le -5.8$ and $y \ge -$	0.17		
	(d)	2, 3		1				
	(e)	Correc	et sketch	2	B1 for straight line with positive g B1 for line crossing y-axis at approximately -2	crossing y-axis at		
	(f)	(-1.41	4, -6.243) (1.414, 2.243)	2	B1, B1 for each correct pair of co- If B0 award SC1 for answers give: accuracy at least 2 or 4 or more de places	n to other		
7	(a)	4 ww	/W	3	B1 for interest = 63 soi M1 for correctly substituted simple formula oe or M1 for $\frac{588}{525}$ A1 for 112% soi	e interest		
	(b)	14800		3	M1 for 10000×1.05 ^{<i>n</i>} where <i>n</i> is a integer >1 oe A1 for 14770 to 14780	in [6]		
8	(a) (i) (ii)	12 5		1 1 1				
	(iii) (b) (i)	10 Correc	et Venn diagram	1 3	B1 for 0 in centreB1 for 7, 2, 12 in correct positionsB1 for 5, 10, 4 in correct positions			
	(ii)	40		1ft	ft from their Venn diagram	[7]		

Page	5	Mark Scheme: Teache	ion Syllabus Paper	
		IGCSE – May/June	0607 42	
9 (a)	2410	(2411 to 2414)	2	M1 for $\pi \times 8^2 \times 12$
(b)	804 (803.8 to 804.4)		3	M1 for $\pi \times 8^2$ (200.9 to 201.1) M1 for $\pi \times 16 \times 12$ oe (602.8 to 603.3)
				(002.8 to 005.5)
(c)	2.5	www 3	3	M1 for $500 = \pi \times 8^2 \times h$ or better or
				$\frac{x}{500} = \frac{12}{\text{their (a)}} \text{ oe}$
				A1 for 2.486 to 2.488 or 2.49
				_
(d)	4		2	M1 for scale factor $\sqrt[3]{\frac{1}{8}}$ oe [10]
10 (a)	29 v	vww 2	2	M1 for 18 or 47 seen
(b)	Freat	uency 4, 5, 10, 5, 6	2	B1 for at least 3 correct
		uency density 1, 0.5, 0.5, 0.3	2ft	ft from their frequency values
		• • • • • •		B1 for at least 2 correct ft
(c)	Correct histogram			B1 for correct widths with vertical lines
		C C		consistently placed from 9 to 10, 14 to 15 etc B2 for their heights ft dep on 5 columns
				B1 for 3 or 4 heights ft dep on 5 cols
11 (a)	1	25. 25%	1	
11 (a)	$\frac{-}{4}(0)$.25, 25%)	1	
	1	e (0.167, 16.7%) www 2	2	M1 for $\frac{2}{4} \times \frac{1}{3}$ oe
(b)	6	(0.107, 10.770) www.2	-	$\frac{1}{4} \frac{1}{3} \frac{1}$
(c)	$\frac{1}{4}$ oe	(0.25, 25%) www 3	3	M2 for $\frac{3}{4} \times \frac{1}{3}$ oe
	4			or M1 for $\frac{a}{b} \times \frac{1}{3}$
				<i>b</i> 3
(d)	$\frac{1}{12}$ c	e (0.0833, 8.33%) www 2	2	M1 for $\frac{1}{4} \times \frac{1}{3}$ oe [8]
(4)	12	· · · ·		4 3

Page	6	Mark Scheme: Teachers' version		Syllabus	Paper	•	
	IGCSE – May/June		2012		0607	42	
12 (a)	Corre	ct quadrilateral drawn	1				
(b) (i)	Correct reflection		1ft	ft their (a)			
(ii)	Correct translation			SC1 for any other translation $\begin{pmatrix} 2 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -3 \end{pmatrix}$			
(iii)	Corre	ct enlargement	3ft	SC2 for other enlargement scale factor $\frac{1}{2}$			
				with correct orientation or SC1 for any other enlargement centre (0,0) [7]			
13 (a)	$\frac{x}{360}$	$\langle \pi \times 10^2 $ or better	2	M1 for $\frac{x}{360}$ used SC1 for $\frac{360 - x}{360} \times \pi \times 10^2$ or better			
(b)	0.5 ×	$10 \times 10 \times \sin x$ or better	2	360 M1 for expression from more complicated method			
(c)	$\frac{x}{360}$	$<\pi$ × 10 ² – 0.5 × 10 × 10 × sinx	1ft	Both expressions must have 10 (not just r) for the radius			
(d)		(b) = 25	M1		equating their area	-	o 25
		$=\frac{1}{2}$ oe 80 - 30 oe	A1 E1		$(0.5 \times 10 \times 10 \sin 15)$ $(150) = 50 \times 0.5 = 2$		
(e)	106 (1	105.8 – 105.9)	2ft	working a ft only if M1 ft for	heir (c) (or their (a) seen. Could re-start answer positive 150 substituted in - (b) or re-start)	· · · · · · · · · · · · · · · · · · ·	[17]
14 (a)	Sketc	h drawn	1	Allow fre	eehand		
(b)	3.4(0)) (3.402 – 3.403) www 4	4	M3 for <i>r</i>	$=\frac{2}{\sin 36}$ or		
				expressio	or $\sqrt{\frac{8}{1-\cos 72}}$ oe i.e		
				If M0, B correct pe	1 for 72, 36, 54 or osition	108 seen in	[5]